Devoir maison nº 9

À rendre le lundi 27 janvier

Extrait d'un rapport du jury du CCINP: « Le futur candidat doit s'appliquer à donner tous les arguments, même simples, conduisant à une conclusion. Nous lui conseillons de s'approprier petit à petit le cours par la pratique des exercices et des problèmes, de travailler les techniques habituelles et surtout de s'entraîner régulièrement à rédiger des questions de manière claire, explicite et structurée. »

Exercice 1. (d'après CCINP TSI 2024)

L'objectif de cet exercice est d'étudier l'existence de la borne inférieure suivante :

$$m = \inf \left\{ \int_0^1 \frac{(x^2 - ax - b)^2}{1 + x} dx, \ (a, b) \in \mathbb{R}^2 \right\}.$$

Plus précisément, nous allons montrer que cette borne inférieure existe et est atteinte en un unique couple (a,b) de \mathbb{R}^2 .

Partie I - Étude d'une suite d'intégrales

On pose, pour tout entier naturel n:

$$I_n = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x.$$

Q1. Calculer I_0 .

Q2. Montrer que, pour tout $n \ge 0$, $I_n + I_{n+1} = \frac{1}{n+1}$. En déduire la valeur de I_1 .

Q3. Montrer que la suite $(I_n)_{n\geqslant 0}$ est décroissante.

Q4. Montrer que $(I_n)_{n\geqslant 0}$ est convergente et que sa limite est 0.

Q5. En utilisant Q2 et Q3, montrer que :

$$\forall n \geqslant 1, \ \frac{1}{2(n+1)} \leqslant I_n \leqslant \frac{1}{2n},$$

et en déduire un équivalent de I_n quand n tend vers $+\infty$.

Partie II - Étude d'un produit scalaire

On note $E = \mathbb{R}[X]$ et on pose

$$\forall (P,Q) \in E^2, \ \langle P \mid Q \rangle = \int_0^1 \frac{P(x)Q(x)}{1+x} \, \mathrm{d}x.$$

Q6. Montrer que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur E. On note $\| \cdot \|$ la norme associée.

Q7. Les vecteurs 1 et X sont-ils orthogonaux pour ce produit scalaire?

Q8. On note $L(X^2)$ le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$. Justifier l'existence de deux réels α et β tel que $L(X^2) = \alpha X + \beta$.

Q9. Que peut-on dire du polynôme $X^2 - L(X^2)$ par rapport à l'espace vectoriel $\mathbb{R}_1[X]$? En déduire que (α, β) est solution du système linéaire :

$$\begin{cases} I_1\alpha + I_0\beta = I_2, \\ I_2\alpha + I_1\beta = I_3. \end{cases}$$

Q10. Justifier l'existence du réel m et l'égalité $m = \|X^2 - \alpha X - \beta\|^2$. On ne demande pas de simplifier cette expression.